Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Translational and Clinical Pharmacology ; : 57-69, 2022.
Article in English | WPRIM | ID: wpr-968818

ABSTRACT

Acetylsalicylic acid (ASA) is one of the most commonly used medications in global market, with a risk of intoxication in certain patients. However, monitoring blood drug concentration often requires frequent hospital visits; hence there is an unmet need to increase patientcentricity by conducting blood sampling at home. Volumetric absorptive microsampling (VAMS) is a device that allows collection of homogenous and accurate volume of blood without venipuncture, and can be utilized by patients who are not in hospital settings; but because ASA is prone to hydrolysis and stabilizing reagents cannot be added to VAMS samples, a way to improve sample stability must be developed. The objective of this study was to identify the cause of instability with ASA samples collected by VAMS, and to evaluate ways to improve sample stability. A liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used for analysis of ASA concentration in whole blood. Samples collected with VAMS were kept under different drying conditions (desiccator, pressurized, nitrogen gas and household vacuum sealer) and were compared to the control samples collected by conventional venous sampling. The recovery of ASA was about 31% of the control when VAMS sample was dried at room temperature, whereas VAMS samples under humidity controlled conditions showed more than 85% of recovery. Our results suggest that adequate level of humidity control was critical to ensure sample stability of ASA, and this humidity control could also be achieved at home using household vacuum sealer, thus enabling patient-centric clinical trials to be conducted.

2.
Translational and Clinical Pharmacology ; : 125-134, 2021.
Article in English | WPRIM | ID: wpr-919413

ABSTRACT

In light of the shift toward patient-centric clinical trials, a measure of simplifying blood collection process and minimizing the volume of blood samples is on the rise. Volumetric absorptive microsampling (VAMS) is a microsampling device developed for blood sampling in non-hospital settings, which enables accurate hematocrit-independent collection of 10 or 20 µL of whole blood with a simple finger prick. In this study, liquid chromatography (LC)-tandem mass spectrometry workflow for quantification of rosuvastatin after VAMS sampling was developed and validated. The VAMS sample was stabilized by matrix drying and the optimum LC conditions and extraction methods were used to reach adequate sensitivity with lower limit of quantification verified at 1 ng/mL in 10 µL of blood. The bioanalytical method to quantify rosuvastatin from 1 to 100 ng/mL in VAMS sample was qualified by specificity, carryover, linearity, within-run and between-run reproducibility and stability. Inaccuracy was less than ± 6% and imprecision was less than 10% after analyzing the samples on 5 different days at all concentration levels. In addition, the feasibility of delivery to the analytical laboratory after home sampling during the guaranteed stability period of 10 days at room temperature was confirmed by evaluating concentration changes after VAMS sampling without adding pH buffer. Our results suggest that VAMS sampling did not have an effect on the stability of rosuvastatin, and it is a viable option for simple and accurate blood collection at home.

3.
Translational and Clinical Pharmacology ; : 171-179, 2021.
Article in English | WPRIM | ID: wpr-919408

ABSTRACT

Gefitinib is an anti-cancer drug used to treat non-small cell lung cancer. The objective of this study was to compare the pharmacokinetics and evaluate the bioequivalence of 2 orally administered gefitinib 250 mg tablets in healthy Korean subjects. A randomized, openlabel, single-dose, crossover bioequivalence study was conducted. A total of 50 healthy male volunteers were randomized into 2 sequence groups. During each treatment, the subjects received the test or reference formulation of 250 mg gefitinib with a washout period of 21 days. The plasma samples were collected at pre-dose and up to 144 hours post-dose, and plasma drug concentrations were measured using validated liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated, and the formulations were considered as bioequivalent if the 90% confidence intervals (CIs) of the geometric mean ratios were within the bioequivalence limits of 0.8 to 1.25. Forty-one subjects completed the study and were included in the pharmacokinetic analysis. The 90% CIs of the geometric mean ratios of the test formulation to the reference formulation were 0.8115 to 0.9993 for maximum plasma concentration and 0.9119 to 1.0411 for area under the plasma concentration versus time curve from dosing to the last measurable concentration. There were no serious or unexpected adverse events during the study. In healthy Korean adult subjects, the test and reference formulations of gefitinib 250 mg had similar pharmacokinetic parameters and similar plasma concentration-time profiles. The test formulation of gefitinib met the regulatory criteria for assuming bioequivalence. Both formulations were safe and well-tolerated.

4.
Experimental & Molecular Medicine ; : e341-2017.
Article in English | WPRIM | ID: wpr-93424

ABSTRACT

Cyclic ADP-ribose (cADPR) releases Ca²⁺ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca²⁺ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca²⁺ ([Ca²⁺](i)) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca²⁺ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca²⁺ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.


Subject(s)
Action Potentials , Adenosine Diphosphate , Adenosine Triphosphatases , Calcium , Cyclic ADP-Ribose , Cytochalasin B , Endoplasmic Reticulum , Homeostasis , Muscle Cells , Myocytes, Cardiac , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases , Reticulum , Ryanodine Receptor Calcium Release Channel , Tyrosine
5.
Experimental & Molecular Medicine ; : 363-368, 2012.
Article in English | WPRIM | ID: wpr-57564

ABSTRACT

Dendroaspis natriuretic peptide (DNP), a new member of the natriuretic peptide family, is structurally similar to atrial, brain, and C-type natriuretic peptides. However, the effects of DNP on the cardiac function are poorly defined. In the present study, we examined the effect of DNP on the cardiac L-type Ca2+ channels in rabbit ventricular myocytes. DNP inhibited the L-type Ca2+ current (ICa,L) in a concentration dependent manner with a IC50 of 25.5 nM, which was blocked by an inhibitor of protein kinase G (PKG), KT5823 (1 microM). DNP did not affect the voltage dependence of activation and inactivation of ICa,L. The alpha1c subunit of cardiac L-type Ca2+ channel proteins was phosphorylated by the treatment of DNP (1 microM), which was completely blocked by KT5823 (1 microM). Finally, DNP also caused the shortening of action potential duration in rabbit ventricular tissue by 22.3 +/- 4.2% of the control (n = 6), which was completely blocked by KT5823 (1 microM). These results clearly indicate that DNP inhibits the L-type Ca2+ channel activity by phosphorylating the Ca2+ channel protein via PKG activation.


Subject(s)
Animals , Rabbits , Action Potentials/drug effects , Biological Transport/drug effects , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Carbazoles/pharmacology , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Elapid Venoms/metabolism , Enzyme Activation , Heart , Heart Ventricles/drug effects , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Peptides/metabolism , Phosphorylation/drug effects
6.
Journal of Korean Neurosurgical Society ; : 8-13, 2010.
Article in English | WPRIM | ID: wpr-114545

ABSTRACT

OBJECTIVE: The etiology and pathogenesis of moyamoya disease remain unclear. Furthermore, the definitive diagnostic protein-biomarkers for moyamoya disease are still unknown. The present study analyzed serum proteomes from normal controls and moyamoya patients to identify novel serological biomarkers for diagnosing moyamoya disease. METHODS: We compared the two-dimensional electrophoresis patterns of sera from moyamoya disease patients and normal controls and identified the differentially-expressed spots by matrix-assisted laser desorption/ionization-time-of flight mass spectrometry and electrospray ionization quadruple time-of-flight mass spectrometry. RESULTS: We found and analyzed 22 differently-expressed proteomes. Two proteins were up-regulated. Twenty proteins were down-regulated. Complement C1 inhibitor protein and apolipoprotein C-III showed predominantly changed expressions (complement C1 inhibitor protein averaged a 7.23-fold expression in moyamoya patients as compared to controls, while apolipoprotein C-III averaged a 0.066-fold expression). CONCLUSION: Although our study had a small sample size, our proteomic data provide serologic clue proteins for understanding moyamoya disease.


Subject(s)
Humans , Apolipoprotein C-III , Biomarkers , Complement C1 Inhibitor Protein , Electrophoresis , Mass Spectrometry , Moyamoya Disease , Proteins , Proteome , Sample Size
7.
The Korean Journal of Physiology and Pharmacology ; : 259-264, 2004.
Article in English | WPRIM | ID: wpr-727915

ABSTRACT

Cytolysin produced by Vibrio vulnificus has been incriminated as one of the important virulence determinants in V. vulnificus infection. Ion selectivity of cytolysin-induced pores was examined in a CPAE cell, a cell line of pulmonary endothelial cell, using inside-out patch clamp techniques. In symmetrical NaCl concentration (140 mM), intracellular or extracellular application of cytolysin formed ion-permeable pores with a single channel conductance of 37.5 4.0 pS. The pore currents were consistently maintained after washout of cytolysin. Replacement of Na in bath solution with monovalent ions (K, Cs or TEA ) or with divalent ions (Mg2, Ca2 ) did not affect the pore currents. When the NaCl concentration in bath solution was lowered from 140 to 60 and 20 mM, the reversal potential shifted from 0 to 11.8 and 28.2 mV, respectively. The relative permeability of the cytolysin pores to anions measured at 40 mV was Cl = NO2 > or = Br = I > SCN > acetate > isethionate > ascorbic acid > EDTA2, in descending order. The cytolysin-induced pore current was blocked by Cl channel blockers or nucleotides. These results indicate that V. vulnificus cytolysin forms anion-selective pores in CPAE cells.


Subject(s)
Anions , Ascorbic Acid , Baths , Cell Line , Endothelial Cells , Ions , Nucleotides , Patch-Clamp Techniques , Perforin , Permeability , Tea , Vibrio vulnificus , Vibrio , Virulence
8.
Experimental & Molecular Medicine ; : 185-191, 2004.
Article in English | WPRIM | ID: wpr-37849

ABSTRACT

Epilepsy affects more than 0.5% of the world population and is known to be associated with a large genetic component eliciting an electrical hyperexcitability in the central nervous system. However, its pathogenic mechanisms remain poorly understood. In order to gain greater molecular incite in the pathogenesis in epilepsy, we analyzed proteomes of human cerebral cortices. Quantitative proteome analysis was used to compare signals corresponding to individual proteins between epileptic cerebral cortices from patients with temporal lobe epilepsy and age-matched non-epileptic subjects. To minimize individual variations, gender and age of the patients were matched. Changes of several spots were consistent among 6 pairs of epileptic patients and nonepileptic subjects. One of the spots was identified as the mitochondrial type Mn-superoxide dismutase (Mn-SOD) confirmed by Western blot analysis with Mn-SOD antibody and enzyme activity assay. Such results were agreeable with chemical and physical parameters given by the 2-dimensional electrophoresis (2-DE) gel. Mn-SOD was consistently down-regulated in epileptic cerebral cortices compared with those of nonepileptic subjects. Our results demonstrate a clear link between pathogenesis of epilepsy and SOD. Additionally, we identified four proteins that were consistently over-expressed in all epileptic temporal neocortices specimens and the other four proteins that were found to be expressed less than non-epileptic control subjects. These proteomic data provide cellular markers in the understanding mechanism of the epilepsy pathogenesis.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Biomarkers/analysis , Brain Chemistry , Case-Control Studies , Cerebral Cortex/chemistry , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Epilepsy/genetics , Mitochondria/chemistry , Nerve Tissue Proteins/chemistry , Proteomics , Superoxide Dismutase/analysis , Up-Regulation
9.
The Korean Journal of Physiology and Pharmacology ; : 293-303, 1999.
Article in English | WPRIM | ID: wpr-728245

ABSTRACT

The influences of specific protein phosphatase and protein kinase inhibitors on the ATP-sensitive K+ (KATP) channel-opening effect of pinacidil were investigated in single rat ventricular myocytes using patch clamp technique. In cell-attached patches, pinacidil (100 muM) induced the opening of the KATP channel, which was blocked by the pretreatment with H-7 (100 muM) whereas enhanced by the pretreatment with genistein (30 muM) or tyrphostin A23 (10 muM). In inside-out patches, pinacidil (10 muM) activated the KATP channels in the presence of ATP (0.3 mM) or AMP-PNP (0.3 mM) and in a partial rundown state. The effect of pinacidil (10 muM) was not affected by the pretreatment with protein tyrosine phosphatase 1B (PTP1B, 10 mug ml-1), but blocked by the pretreatment of protein phosphatase 2A (PP2A, 1 U ml-1). In addition, pinacidil (10 muM) could not induce the opening of the reactivated KATP channels in the presence of H-7 (100 muM) but enhanced it in the presence of ATP(1 mM) and genistein (30 muM). These results indicate that the KATP channel-opening effect of pinacidil is not mediated via phosphorylation of KATP channel protein or associated protein, although it still requires the phosphorylation of serine/threonine residues as a prerequisite condition.


Subject(s)
Animals , Rats , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Adenosine Triphosphate , Adenylyl Imidodiphosphate , Genistein , KATP Channels , Muscle Cells , Phosphorylation , Pinacidil , Protein Kinase Inhibitors , Protein Phosphatase 2 , Protein Tyrosine Phosphatase, Non-Receptor Type 1
10.
The Korean Journal of Physiology and Pharmacology ; : 305-313, 1999.
Article in English | WPRIM | ID: wpr-728244

ABSTRACT

To explore whether Cl- channel blockers interact with the ATP-sensitive K+ (KATP) channel, I have examined the effect of two common Cl- channel blockers on the KATP channel activity in isolated rat ventricular myocytes using patch clamp techniques. In inside-out patches, 4,4'-diisothio-cyanatostilbene-2,2'-disulfonic acid (DIDS) and niflumic acid applied to bath solution inhibited the KATP channel activity in a concentration-dependent manner with IC50 of 0.24 and 927 muM, respectively. The inhibitory action of DIDS was irreversible whereas that of niflumic acid was reversible. Furthermore, DIDS-induced block was not recovered despite exposure to ATP (1 mM). In cell-attached and inside-out patches, DIDS blocked the pinacidil- or 2,4-dinitrophenol (DNP)-induced KATP channel openings. In contrast, niflumic acid did not block the pinacidil-induced KATP channel openings in inside-out patches, but inhibited it in cell-attached patches. DIDS and niflumic acid produced additional block in the presence of ATP and did not affect current-voltage relationship and channel kinetics. All these results indicate that DIDS among Cl- channel blockers specifically blocks the cardiac KATP channel.


Subject(s)
Animals , Rats , 2,4-Dinitrophenol , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid , Adenosine Triphosphate , Baths , Inhibitory Concentration 50 , Kinetics , Muscle Cells , Niflumic Acid , Patch-Clamp Techniques
11.
Korean Circulation Journal ; : 889-898, 1994.
Article in Korean | WPRIM | ID: wpr-206730

ABSTRACT

BACKGROUND: The effects of a newly synthesized potassium channel opener, KR-30816((-)(nitro-2-hydroxymethyl-2-methy-2H-1-benzopyran-4-y1)pyridine oxide) on the action potential of papillary muscles of guinea pigs and the ATP-sensitive potassium channel current(IKATP) of single ventricular muscle cells of rats were examined to make clear its action mechanism of the KATPchannel. METHODS: We used the conventional microelectrode and the excised inside-out patch configuration. RESULTS: KR-30816 caused a shortening of the action potential duration in dose-dependent manner, which was inhibited by glibenclamide(3microM). Before run-down of the K+channel, KR-30816 activated the cardiac ATP-sensitive K+ channel only in the presence of ATP and shifted the dose-response relation curve between [ATP]i and the channel activity to the right in parallel. After run-down of the KATP channel, KR-30816 did not after the channel opening either in the absence or in the presence of UDP. CONCLUSION: These results suggest that KR-30816 antagonizes the inhibitory effect of ATP on the KATPchannel in a competitive manner, thereby enhancing the channel openings.


Subject(s)
Animals , Rats , Action Potentials , Adenosine Triphosphate , Guinea Pigs , Heart , Microelectrodes , Muscle Cells , Papillary Muscles , Potassium Channels , Potassium , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL